Two-photon oxygen sensing with quantum dot-porphyrin conjugates.

نویسندگان

  • Christopher M Lemon
  • Elizabeth Karnas
  • Moungi G Bawendi
  • Daniel G Nocera
چکیده

Supramolecular assemblies of a quantum dot (QD) associated to palladium(II) porphyrins have been developed to detect oxygen (pO2) in organic solvents. Palladium porphyrins are sensitive in the 0-160 Torr range, making them ideal phosphors for in vivo biological oxygen quantification. Porphyrins with meso pyridyl substituents bind to the surface of the QD to produce self-assembled nanosensors. Appreciable overlap between QD emission and porphyrin absorption features results in efficient Förster resonance energy transfer (FRET) for signal transduction in these sensors. The QD serves as a photon antenna, enhancing porphyrin emission under both one- and two-photon excitation, demonstrating that QD-palladium porphyrin conjugates may be used for oxygen sensing over physiological oxygen ranges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors.

Micelles have been employed to encapsulate the supramolecular assembly of quantum dots with palladium(II) porphyrins for the quantification of O2 levels in aqueous media and in vivo. Förster resonance energy transfer from the quantum dot (QD) to the palladium porphyrin provides a means for signal transduction under both one- and two-photon excitation. The palladium porphyrins are sensitive to O...

متن کامل

Bias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)

The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...

متن کامل

Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy†

In search of strategies to develop deeply penetrating agents for use in Photodynamic Therapy (PDT), we have devised a Quantum Dot-Rose Bengal conjugate that is effective at producing singlet oxygen upon two-photon irradiation. The CdSe/ZnS Quantum Dot, with its high two photon absorption cross section, serves as a two-photon absorbing antenna and transfers its excited state energy to the attach...

متن کامل

A Review on Aptamer-Conjugated Quantum Dot Nanosystems for Cancer Imaging and Theranostic

Over the last 10 years, fluorescent semiconductor QD (quantum dot)-aptamer conjugates have emerged as an efficient platform for cancer imaging and therapy in animal models and in vitro. In addition, these conjugates show potential in a wide range of applications in environmental monitoring, disease diagnosis, and bio-sensing. The present review represents the recent developments in QDaptamer bi...

متن کامل

Singlet oxygen production by Peptide-coated quantum dot-photosensitizer conjugates.

Peptide-coated quantum dot-photosensitizer conjugates were developed using novel covalent conjugation strategies on peptides which overcoat quantum dots (QDs). Rose bengal and chlorin e6, photosensitizers (PSs) that generate singlet oxygen in high yield, were covalently attached to phytochelatin-related peptides. The photosensitizer-peptide conjugates were subsequently used to overcoat green- a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 52 18  شماره 

صفحات  -

تاریخ انتشار 2013